

TSI-6X25H

FM/DAB Handover Emulator with AM and GNSS injection and Cellular Distribution

FM / DAB

Features

- 6 FM/DAB generator inputs
- 25 outputs for working stations
- Compact design 19", 38 U
- AM generator input
- **GNSS** generator input
- Separate distribution for cellular 350 MHz ... 6000 MHz

Applications

- car infotainment test
- product integration, verification & qualification
- FM/DAB hand-over test
- AM, GNSS signal distribution
- multi RF routing to communication tester

Scope

TSI-6X25H is a broadcast distribution infrastructure for large infotainment integration and verification laboratories. Connected to a set of up to 6 FM/DAB generators, every of up to 25 laboratory seats can be supplied with a composite RF signal that is individually composed of a programmable mix of the generator signals. This setup allows to recreate a realistic car radio environment, whereby the car radio receives multiple radio broadcast stations simultaneously with varying propagation loss. In particular it allows to simulate a handover between broadcast towers receiving the same radio program, while switching from FM to DAB or vice versa. Reproducing such a complex environment in the laboratory saves cost and time during product integration and verification. The laboratory installation is particularly cost-efficient, as the composite signals are made available to the laboratory seats via a single coaxial cable.

High level dynamic

The system's overall insertion loss is small. A set of 6 x 25 variable attenuators with an attenuation range of 95.25 dB are provided. The attenuators can be configured hundreds of times per second, so that real-time channel transition scenarios can be produced.

AM and GNSS signal injection

The TSI-6X25H system has an AM and a GNSS signal input to provide also AM and GNSS simulated signals to every laboratory seat. These extensions fit physically into the same 19" rack. The AM and GNSS signals are carried over the same coaxial cable together with the composite FM/DAB signal, not requiring any additional cable installation in the laboratory.

Subject to change in specification and design without notice. released version 1.00 - march 2019

Versatile control

The TSI-6X25H can be controlled via LAN remote interface. Simple SCPI-inspired ASCII commands can be used by existing SW environments to control the system.

Additional the system offers a graphical user interface (GUI). All attenuator parameters and even transition scenarios can be set via the GUI quasi-simultaneously by all laboratory workers individually for their respective seats.

Software functions

The software of the TSI-6X25H offers helpful features. As example automatic handover processes are easily definable and the GUI makes the dynamic handover processes visible. A second example is that names of signal inputs and outputs can be defined by the user that corresponds to their infrastructures.

Table-top adapters for laboratory seats

Becker Nachrichtentechnik GmbH provides compact table-top adapter devices that take in the composite signal and provide a number of outputs corresponding precisely with the antenna inputs of infotainment devices. The functionality of the tabletop adapter goes beyond demultiplexing the various frequency bands, but also includes active antenna simulation through fixed (FDMX2) or

variable (FDMX2-PT) DC loads.

The table-top adapters are delivered together with a cable set, that fits the infotainment device (e.g. with fakra connectors.

As a result of using the TSI-6X25H infrastructure and the FDMX2 table-top units, the infotainment device or car radio will work as if it was in a real car environment with all its active antennas and radio signals that vary in signal level as if the car was travelling on the road.

Cellular Distribution

Additional to the broadcast handover and distribution function the TSI-6X25H offers a separate bi-directional distribution for RF signal routing from 25 seats to a communication tester. Due to the wide frequency range covering from 350 MHz to 6000 MHz the bi-directional distribution is useable for 2G, 3G, 4G and 5G cellular standards.

The transmissions via RF cables avoid influences of radio fields during testing coming from environment and make thereby the tests reproduce able. The high out-to-out isolation reduces the influence of each other adjacent test units.

RF Specifications

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
impedance	Zin / Zout		50		Ohm	
FM / DAB						
number of inputs	N FMDAB		6			
low frequency	f _{min}		65	70	MHz	
high frequency	f _{max}	300	400		MHz	
input return loss	S11FMDAB		-15		dB	
gain	S _{21FM}		3		dB	@ 100 MHz, 0 dB ATT
	S _{21DAB}		1		dB	@ 200 MHz, 0 dB ATT
level adjustment range	∆a	0		-95.25	dB	
level step size	da		0.25		dB	
maximal input power	Pin max			+15	dBm	CW, no damage
DC voltage	UDC			20	V	
ESD discharge resistor	Resd		4.7		kΩ	
RF connectors	XFMDAB	N female			FM, DAB generator inputs	
AM						
number of inputs	ПАМ		1			
low frequency	f _{min}			100	kHz	
high frequency	f _{max}	30			MHz	
input return loss	S _{11AM}		-15		dB	
gain	S _{21AM}		5		dB	
maximal input power	Pin max			+15	dBm	CW, no damage
DC voltage	UDC			20	V	
ESD discharge resistor	Resd		4.7		kΩ	
RF connector	Хам		N female			AM generator input
GNSS						
number of inputs	NGNSS		1			
low frequency	f _{min}			1100	MHz	
high frequency	f _{max}	1610	2500		MHz	

Becker Nachrichtentechnik GmbH
Kapellenweg 3
S3567 Asbach - Germany
www.becker-rf.com

input return loss	S11GNSS	-12		dB	
insertion loss	S21GNSS	-22		dB	@1575 MHz
maximal input power	Pin max		0	dBm	CW, no damage
DC voltage	UDC		0	V	
ESD discharge resistor	Resd	1		Ω	
RF connector	X _{GNSS}	N female			GNSS generator input
OUTPUTS					
number of seats	N SEAT	25			AM. FM, DAB, GNSS
output return loss	S ₂₂	-13		dB	AM, FM, DAB, GNSS ranges
DC voltage	U _{DC}		20	V	
ESD discharge resistor	Resd	4.7		kΩ	
RF connectors	XSEAT	N female			

Cellular						
impedance	Z _{in} / Z _{out}		50		Ohm	
number of inputs	NCEL		1			
low frequency	f _{min}		300	350	MHz	
high frequency	f _{max}	6000			MHz	
input return loss	S11CEL		-12		dB	
insertion loss	S _{21CEL}		-18		dB	f ≤ 3000 MHz
	S _{21CEL}		-22		dB	@ 6000 MHz
maximal power	Pin max			+43	dBm	CW as splitter
	Pin max			+33	dBm	CW as combiner
DC voltage	UDC			20	V	All ports are DC coupled
number of seats	N SEAT		25			
RF connector	XCEL		N female			CEL and 25 seat ports

Common Specifications

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
power supply	UAC	90	230	260	V	50 / 60 Hz
power consumption	Р		500		W	
power plug		type "F" CEE7/4				
dimensions	WxHxD	approx.	600 x 18	00 x 800	mm	19", 38 U
weight			220		kg	
remote interface		RJ45 10/100BaseT			ASCII commands	
operating temp. range	To	+ 20		+ 30	°C	within specification
storage temp. range	Ts	- 40		+ 70	°C	
EMC		EN61326-1:2013				according directions:
		2014/30/EU				
safety		EN61010-1:2010			according directions:	
						2014/35/EU
Ordering information	P/N	1805.101	12.1	TSI-6X25	H	

Becker Nachrichtentechnik GmbH
Kapellenweg 3
S3567 Asbach - Germany
www.becker-rf.com

Subject to change in specification and design without notice. released version 1.00 - march 2019

S-Parameters (typical responses)

AM / FM / DAB /GNNSS

Becker Nachrichtentechnik GmbH
Kapellenweg 3
S3567 Asbach - Germany
www.becker-rf.com

Subject to change in specification and design without notice. released version 1.00 - march 2019

RoHS compliant in accordance with EU Directive 2011/65/EU

CELLULAR

Becker Nachrichtentechnik GmbH
Kapellenweg 3
S3567 Asbach - Germany
www.becker-rf.com

Subject to change in specification and design without notice. released version 1.00 - march 2019

RoHS compliant in accordance with EU Directive 2011/65/EU

Appearance

Front view

Rear view

Related Products

Product	Description	P/N
FDMX2	De-Multiplexer for Broadcast and Navigation Signals with fixed DC loads	1310.6201.1

FDMX2 offers fakra connectors for dual AM/FM/DAB, DAB, DVB-T, GNSS and SAT (SDARS) for DUT connection. Each input has an internal DC load for phantom supply. For intensive phantom supply tests, the variant

FDMX2-PT offers programmable current sinks 0...300 mA at each input.

The signal mix of AM, FM, DAB, DVB-T, GNSS and SAT is fed into the FDMX2 over with a common input. Inside the FDMX2 the signals are separated into the different broadcast bands.

Subject to change in specification and design without notice. released version 1.00 - march 2019

