

WSDU-1X16P

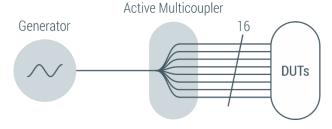
16 Channel HTOL RF Testing System, 2.5 W, 20 MHz...3000 MHz

Features

- wideband
- compact 19", 15 U design
- amplitude balance ±1 dB typ.

Applications

- qualification of e.g. active and passive cellular and wireless frontend components
- quality assurance (new designs, batch verification)
- research and development (R&D)



At a glance

High-temperature Operating Life Time (HTOL) testing is an intense stress test performed to simulate aging and accelerate thermally activated failure mechanisms.

During HTOL testing a large set of devices under test (DUT) is put under extreme temperature and absolute maximum rating conditions. Typically it is performed at 125°C. Details are described in JEDEC standard JESD22-A108.

Principle Circuit

Introduction

Power stress tests and HTOL tests requires RF systems which offer multichannel high output power with high level precision. WSDU-1X16P is a compact HTOL RF-testing system, suitable for the frequency range 20 MHz...3000 MHz in 50 ohms technology. It offers 16 RF channels with up to 5 watts output power per channel, translating to 2.5 W at the input of the DUT. All channels can be supplied via a single low power RF input.

Easy maintenance

The WSDU-1X16P features a very modular design for easy maintenance. Every module can be replaced by unfastening the screws on the front panel and removing the RF cables on the rear side of the module. Voltage supply and data bus connections do not require any manual wiring when modules are swapped.

RF Specifications

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
impedance	Z_{IN}/Z_{OUT}		50		Ohms	
number of outputs	n _{DUT}	16				SMA connectors male
low frequency	f _{min}			20	MHz	
high frequency	f _{max}	2800	3000		MHz	
output power balance	ΔP_out		± 1	± 2	dB	output to output
harmonics	d		- 30		dBc	
output isolation	S ₂₃		- 80		dB	adjacent channels
max. output power	P _{OUT}	+ 33	+ 34		dBm	f ≤ 2200 MHz
	P _{OUT}	+ 30	+ 31		dBm	f > 2200 MHz
output isolation	S ₂₃		- 80		dB	adjacent channels

Common Specifications

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition	
supply voltage	U _{AC}		230		V	AC 50 Hz	
power consumption	Р		240		W	@ P _{out} = 16 x 1.6 W, 2 GHz	
power cable length	1	1.5			m		
power plug		type "F" CEE7/4					
dimensions	WxHxD	approx. 610 x 840 x 640			mm	19", 15 U	
cable feedthrough	h		42		cm	from floor	
output cable length	I _{OUT}	1			m	RF cable length from rack to DUT	
cable length RF input	I _{GEN}		0.5		m	RF cable length to RF generator	
weight	m		120		kg		
warm up time	T _w		1		h		
operating temp. range	T _o	+ 20		+ 30	°C		
storage temperature	T _s	- 40		+ 70	°C		
EMC	EN61326-1:2013					according directions: 2014/30/EU	
safety		EN61010-1:2010				according directions: 2014/35/EU	

Ordering Information

WSDU-1X16P	P/N:	1202.6402.1	Cable feed-trough on the right side
WSDU-1X16P	P/N:	1202.6402.2	Cable feed-trough on the left side

Related Products

Product	Description	P/N
TSQA-1X80PM	80 Channel Precise Automatic HTOL RF Testing System, 2.5 W, 20 MHz3000 MHz	1606.1012
TSQA-1X16PM	16 Channel Precise Automatic HTOL RF Testing System, 2.5 W, 20 MHz3000 MHz	1606.1002
TSQA-16CH10	16 Channel High-Precision Automatic HTOL RF Testing System, 10 W, 600 MHz 2200 MHz	1507.1012
WSDU-1X80P	80 Channel HTOL RF Testing System, 2.5 W, 20 MHz3000 MHz	1202.6102
WSDU-1X232	232 Channel HTOL RF Testing System, 125 mW, 3502500 MHz	1004.1002